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TECHNICAL PUBLICATION

ESTIMATING COSMIC-RAY SPECTRAL PARAMETERS FROM SIMULATED DETECTOR
RESPONSES WITH DETECTOR DESIGN IMPLICATIONS

1.  INTRODUCTION

This Technical Publication (TP) develops statistical methods for estimating the three spectral
parameters of the broken power law energy spectrum. Estimation of these parameters and quantification of
the surrounding uncertainty of the estimates are of considerable importance to designers of cosmic-ray
detectors.

Analytical methods were developed in conjunction with a Monte Carlo simulation to explore the
combination of the expected cosmic-ray environment with a generic space-based detector and its planned
life cycle, allowing us to explore various detector features and their subsequent impact on estimating the
spectral parameters. This study thereby permits instrument developers to make important trade studies in
design parameters as a function of the science objectives, which is particularly important for space-based
detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the
design envelope.

A simple power law model consisting of a single spectral index (α1) is believed to be an adequate
description of the galactic cosmic-ray (GCR) proton flux at energies below 1013 eV, with a hypothesized
transition at knee energy (Ek) to a steeper spectral index α2 > α1 above Ek. Methods for estimating these
three spectral parameters are developed in this TP. Because many of the features and analytical tools
related to a simple power law have natural extensions to the analysis of this so-called broken power law,
these methodologies will be discussed in detail first.
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2.  SIMPLE POWER LAW

The simple power law suggests that the number of protons detected above an energy (E) for an
assumed collecting power (product of size and observing time) is given by:1

N E N
E

EA
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11

( )> =






− +α
  , (1)

where E is in units TeV, α1 is believed to be ≈2.8, and NΑ and EΑ are numbers determined from the detector
size and exposure time in the environment, respectively. For a typical space-based detector of 1 m2 with a
3-yr program life, NΑ and EΑ are 160 and 500 TeV, respectively, implying that this detector is expected to
observe 160 proton events above 500 TeV over its expected life cycle. In statistical terms, N0 is assumed to
represent an average number of events while the actual number to be observed on any given mission would
follow the Poisson probability distribution with mean number N0. The number of particles detected is
taken to depend only on the geometrical factor of the assumed detector and its material composition. The
detection efficiency is a convolution of the geometry and material composition and is taken to be indepen-
dent of energy.

The associated cumulative probability distribution function (cdf) for E over some energy interval
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Thus, the corresponding probability density function (pdf) for E is
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To randomly sample GCR proton event energies from the simple power spectrum over the interval
[E1,E2], ui=Φ0(Ei) is solved in terms of Ei to obtain
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where ui is a simulated random number from a standard uniform distibution and Φ0
−1 represents the inverse

function of Φ0, which is a conventional notation that will be used in subsequent sections. The mean of the
simple power law distribution is determined by the expected value operator <E> which gives
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The variance is given as σ2
E = <E2> – (<E>)2, where the general form of <Em> is
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At this time, note the critical point that <E2> becomes infinite, as do all other higher moments, as
E2 goes to infinity, as is easily seen in eq. (7):
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This observation suggests the need for a careful look at the effects of the large variance and other
higher moments associated with all power law distributions, even when E2 is kept finite. A measure of the
relative dispersion of the energies of the incident protons, which is independent of units, is defined by
V=σΕ /µΕ  for the simple power law and is called the coefficient of variation in the statistical literature. An
important concept in detector design is the energy resolution ρ of the detector that provides a measure of
the relative accuracy of a cosmic-ray detector, which is the fractional error in measurements of a
monoenergetic beam. The resolution ρ is defined as the standard deviation divided by the mean response
with typical values of 30 to 40 percent.

As will be shown in this TP, the precision with which the spectral parameter α1 can be estimated
from a set of detector responses (energy deposits), measured in terms of its standard deviation, is a function
of both the variance of the incident energies and the uncertainty induced by the detector. The dominating
component of this measurement precision will be shown to be attributable to the variance of the incident
energies σE, which in turn can only be controlled through collecting power. Since V and ρ are dimension-
less and provide a measure of relative dispersion for the power law distribution and detector, respectively,
an instructive comparison will show that V>>ρ. To illustrate these points, a detector-life cycle having
parameters NΑ=160 and EΑ=500 TeV will observe 52,200 events on average in the energy range E1=20
TeV to E2=5,500 TeV from a simple power law spectrum when α1 is 2.8, which gives a mean GCR event
energy µE =44.5 TeV, a standard deviation σE=74.10 TeV, and a coefficient of variation V=166.5 percent.
In comparison, the resolution ρ of most detectors is between 30 and 40 percent. E2 is chosen for this
detector-life cycle combination as 5,500 TeV, since the expected number of events above this energy are
negligible, while E1 is taken to be 20 TeV for purposes of this discussion.

Since the number of events and their incident energies will vary because of the finite detector size
and exposure time, the statistical behavior of the GCR event energies in combination with a detector
having energy resolution ρ and the subsequent spectral parameter estimates over multiple missions will be
studied. Thus, for each mission, a random number N of GCR events from a Poisson distribution with mean
52,200 to represent the number of simulated events that the detector will observe in the energy range 20 to
5,500 TeV on any given mission will be generated.

Next, the incident energy of each of these N events using eq. (4) is simulated. For example, for one
such simulated mission, N=51,883 and the mean and standard deviation of the simulated GCR incident
energies are calculated to be 43.85 and 66.39 TeV, respectively. To illustrate the large fluctuations associ-
ated with power law distributions, the same number of events (51,883) are simulated from a normal distri-
bution having a mean of 44.5 and standard deviation 74.1 so as to match the power law’s mean and standard
deviation for this energy range when α1=2.8 and observe that the sample mean and standard deviation are
44.51 and 74.17, respectively, for a single sample mission, which are much closer to the population mean
and variance than those from the power law random samples. This process is repeated for 100 missions,
and the standard deviation for each mission is plotted in figure 1.

Note the large fluctuations of the standard deviations for the power law samples from mission to
mission, while in contrast, the standard deviations of missions generated from a normal distribution are
very stable. As will be seen in subsequent sections, this is why the variation in detector responses is domi-
nated by the variation of GCR event energies, while the additional variation induced by the detector’s
energy resolution plays a rather minor role. This in turn contributes the dominant component of the stan-
dard deviation of the spectral parameter estimator.
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Figure 1. Standard deviation of simulated incident energies from power
law (ragged curve) for 100 missions compared with that from
normal distribution having same mean and variance.
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The variation of the sample standard deviation s, measured by its standard deviation, is given by

σ µ µ
µs N

= −4 2
2

24
  , (8)

where µr is the rth central moment about the mean,2 defined for the simple power law as

µ φr
rE u E dEE= −∫ ( ) ( )0

  . (9)

Thus, the large variation in mission standard deviations is due to the term µ4, which again is only
finite by setting E2 to a finite value, but nevertheless is responsible for the erratic behavior of the mission-
to-mission sample standard deviations as depicted in figure 1. This erratic behavior of the observed mis-
sion standard deviations will necessarily be true for any power law having spectral index α1≤ 5 .  Note that
for the normal distribution,

σ σ
s N

=
2

  , (10)

and evaluation of these two formulae yield σs=5 TeV for the simple power law and 0.229 for the normal
distribution, which is roughly a factor of 22.
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2.1  Estimation of the Spectral Parameter ααααα1

Of particular interest in the study of cosmic-rays is the estimation of the spectral parameter α1 from
a set of data. Even though in practice the actual incident GCR energies are never observed, but only
a measure of their energy deposition from their passage through the detector, it is important to consider the
concept of an ideal detector having zero resolution. Thus, such a detector would measure the GCR event
energies exactly.

2.1.1  Method of Moments

The method of moments consists of equating the sample moments with the population moments,
which in general leads to k simultaneous nonlinear algebraic equations in the k unknown population
parameters. For the simple power law, there is only one parameter to be estimated, so the sample meanE
is set to the population mean µE in eq. (5) and then this nonlinear equation is solved in terms of α̂1, where
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Thus, for a given sample of size N, this equation is solved in terms of α̂1 by numerical methods to
provide an estimate of α1. This estimator, which is a function of the random variable E , has its own
associated pdf. Since the GCR incident energy E has mean µE and finite variance σ E

2
  (only because the

upper energy E2 is finite), it is known by the Central Limit Theorem that the distribution of the sample
average E  follows a normal distribution with mean µE and variance σ E

2/N.

For example, when α1=2.8, E1=20 TeV, E2=5,500 TeV, E  is normally distributed with mean
44.5 TeV and standard deviation (74.1 TeV)/N

1⁄2. These results can be used to obtain the probability
distribution of the estimator by solving the probability equation:
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in terms of α̂1 for various values of Z. Letting Z vary from –4.7 to 4.7 and setting N=52,000 events gives
the probability distribution of α̂1 shown in figure 2. Also depicted in figure 2 is the relative frequency
histogram of the estimates α̂1, based on 5,000 simulated missions; where for each mission, 52,000 events,
on average, are simulated and the estimate of α1 obtained by solving eq. (11). Furthermore, even though an
explicit mathematical form for the pdf is not readily available, its mean and standard deviation can be
calculated by numerical methods. For the distribution shown here, a numerically evaluation reveals its
mean to be 2.800 and standard deviation as 0.0115 when N=52,000, which compares to the mean and
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Theoretical Distribution of     Versus
Histogram of Estimates Based on 5,000 Missions
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Figure 2. Probability distribution of method of moments estimate of  α1
with relative frequency histogram of spectral parameter estimates
obtained from simulation.

standard deviation of the 5,000 simulated estimates with 2.800 and 0.0114, respectively. With the ability to
numerically construct this estimator’s pdf and moments, the important result is that its variance is inversely
proportional to the sample size N, which is also true for many common estimators; e.g., the sample mean,
standard deviation, and median. For example, if the number of events is doubled, then the variance is
halved; and if the number of events is halved, then the variance doubles. Note that this relationship be-
tween sample size and the standard deviation of the estimator α̂1 is based on keeping E1 and E2 fixed, so
that in practice, the variance can be reduced by increasing the size and/or observing time.

2.1.2  Method of Maximum Likelihood

The likelihood function of a random sample from the simple power law, regarded as a function of
the single unknown parameter α1, is

L
E E

E E E E

N

i
i

N

i( ) ,α α
α α

α

1
1

1
1

2
1

1
1 2

1
1 1

1

= −
−



















 ≤ ≤− −

=

−
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The method of maximum likelihood (ML) seeks as the estimate of α1 that value (say, αML) which
maximizes the likelihood function so that L(αML ) ≥ L(α1) for all α1. Statistically speaking, this means that
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the ML estimator leads us to a choice of α1 that maximizes the probability of obtaining the observed data.
In practice, it is often simpler to work with the logarithm of the likelihood function and seek solutions of
(log L)′=0 for which (log L)″ <0 (indicating a maximum), where the prime and double prime indicate the
first and second derivative, respectively. Thus, eq. (14) is numerically solved in terms of α1 to obtain the
ML estimate αML

∂
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The second derivative of the log-likelihood function is obtained next. Note that (log L) ″ <0 for all
α1, indicating that log L is concave; hence, there is a unique maximum, which was graphically observed by
plotting log L as a function of α1:
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By the Cramer-Rao inequality, the lower bound of the variance of any estimator α)  of α1 is given
by:3

  

Var
L
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∂
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2
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2

  , (16)

which is asymptotically attained by the ML estimator. Also note that it is inversely proportional to the
number of events N as was the variance of the estimator obtained using the method of moments. Other
important properties of ML estimators are (1) asymptotically normally distributed and (2) consistency or
asymptotically unbiased. Thus, a key question is, “For what values of N are these asymptotic properties
achieved by the ML procedure?”

Based on the same 5,000 mission set discussed in the previous section, the mean and standard
deviation of the 5,000 ML estimates are 2.800 and 0.00782, respectively. Using eqs. (15) and (16), the
Cramer-Rao bound is computed to be 0.00786 when N=52,000 and αML=2.800, which compares very well
with the simulation results.  Furthermore, the frequency histogram of these 5,000 ML estimates resembled
the normal distribution as stated in (1) of the above paragraph.  A separate simulation study was conducted
in which the sample size N was gradually reduced from 52,000 to 200, and the two asymptotic properties
(1) attaining the Cramer-Rao bound and (2) consistency, were achieved by the ML estimates until around
N=1,200. A bias on the high side of αML and failure to attain the Cramer-Rao bound became more and
more evident as the number of events N diminished from 1,200 to 200.

Another very important comparison is the ratio of the standard deviation of αML to that of the
estimator obtained using the method of moments. Direct calculation shows this ratio is roughly 1.45,
implying that the ML procedure is significantly better than the method of moments when dealing with the
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simple power law. This result is not too surprising, however, because ML estimators, in general, have
better statistical properties than the estimators obtained by the method of moments.4

2.2  Detector Response Function

An original goal of this research was to create a Monte Carlo simulation in which various detector
response functions describing the distribution of energy deposition in the detector as a function of incident
GCR proton energy could be inserted. This desired flexibility led us to seek a numerical solution instead of
a completely analytical approach.

Based on GEANT simulations of energy deposition for monoenergetic protons at specified ener-
gies at 0.1, 1, 10, 100, 1,000, and 5,000 TeV, the Gaussian distribution provided a reasonable description of
the distribution of energy depositions at each of these incident energies.5 Furthermore, the mean detector
response was found to be well approximated by a linear function of incident energy in the range of interest
for this study, which is typically between 10 and 5,500 TeV. Other detector response functions, such as a
gamma distribution and another response function constructed from a combination of normal distributions
having different parameters, have also been investigated and are presented in the broken power law section
of this TP.

The random variable Y is introduced to represent the detector’s response in terms of energy deposi-
tion of a GCR proton of incident energy E, and the conditional mean response and standard deviation of Y
for a given event energy E modeled as µY E a bE| = +( )  and σY E (c dE| )= + , respectively, where the four
coefficients a, b, c, and d are estimated using linear regression on the GEANT simulation results. Thus, for
each simulated incident GCR proton energy Ei, the detector response is simulated as

Y Zi Y E Y E ii i
= +µ σ| |

(17)

or

Y a bE c dE Zi i i i= + + +( ) ( )   , (18)

with the nonnegativity constraint Yi>0 and where Zi is a standard normal random number having zero
mean and unit standard deviation. Thus, the detector response function is defined as

g y E e yy E

y E

y y E

y E( | ) ,|

|

( )|

|= >
−

−
η

πσ

µ
σ

2
0

2

2

2

2
  , (19)

where ηy|E is a normalizing coefficient related to the truncation of the normal distribution resulting from
the constraint y>0. It is worth noting for constant resolution studies in which a Gaussian response function
is assumed and ρ=σ/µ is set to values 0.4 and 0.6, the corresponding detector energy resolution is 39 and
51 percent, respectively, and is rounded to 40 and 50 percent in the figures and tables in this TP.
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Thus, ηy|E is determined from

1 1
2

2

1

2
η π

ρ
y E

z

e dz

y E
|

|

=
−∞

−
∫   , (20)

where the lower limit of integration is –1 divided by the resolution function given as

ρy|E = σY|E /µY|E  = (c + dE)/(a + bE)  . (21)

First, it is worthwhile to consider a detector having energy resolution ρy|E=σY|E /µY|E a constant ρ
and independent of the cosmic-ray’s energy (E) so that σY|E = ρ µY|E , where typical values of interest for ρ
are 0, 0.2, 0.3, 0.4, and 0.6. It should also be noted that the normalizing coefficient η in eq. (20) is constant
whenever the detector resolution  ρ is energy independent.

Second, a case where µY|E and σY|E are linear but their ratio is not a constant so that the detector’s
resolution is a nonlinear function of incident energy E was investigated. For this second scenario, two
studies were conducted in which the resolution is getting better from 40-percent resolution at 20 TeV to
30-percent resolution at 5,500 TeV and then getting worse from 30-percent resolution at 20 TeV to 40-
percent resolution at 5,500 TeV. These two energy-dependent cases are presented in the broken power law
section.

For detectors having constant energy resolution ρ, η is also a constant but depends on ρ, and is
given in table 1 for several values of energy resolution.

Table 1.  Normalizing coefficient η for Gaussian response function.

2.3  Probability Distribution of the Detector Response

The probability distribution for the detector response in the presence of the simple power law
energy spectrum over the energy range [E1,E2] is:

Truncated 
Probability

η

0

1

2.9E-07

1

0.00043

1.00043

0.00621

1.00625

0.02275

1.02328

0.04779

1.05019

10% 20% 30%

Constant Resolution (ρ)

40% 50% 60%
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g y g y E E dE y
E

E

0 1 0 1

1

2

0( ; ) ( | ; ) ( ; ) ,α ρ φ α= >∫   . (22)

The spectral parameter α1 has been explicitly included in the argument list of both the simple
power law pdf as φ0(Ε;α1) and the detector response distribution g0(y;α1) in eq. (22) to indicate that this
spectral index is inherited through the integral.

2.4  Ideal Detector

The concept of a zero-resolution or ideal detector is very useful because it sets an upper bound on
the expected performance of any real detector. Furthermore, it allows quantifying the magnitude of the
uncertainty in the estimate of the spectral parameter, measured in terms of the standard deviation of the
estimator, attributable to event statistics (statistical fluctuation of incident GCR proton energies) relative to
the uncertainty in measuring the spectral parameter estimate induced by the detector’s nonzero energy
resolution.

Thus, for an ideal detector, ρ=0 so that the standard deviation σY|E=0 for all GCR event energies E.
Hence, the detector response to a GCR of energy E is given by Y=a+bE so that the incident energies may
be directly obtained as Ei =(Yi –a)/b; therefore, the estimation procedures developed in sections 2.1.1 and
2.1.2 apply.

2.4.1  Method of Moments for a “Real” Detector

The conditional expected value theorem, which says that the expected value of the conditional
expected value is the unconditional expected value,6 or in the notation of the mathematical expectation
applied to the detector response Y,

µY Y Y E= < > = << >>|   , (23)

to obtain the mean detector response µY for a detector having constant resolution ρ:

µ µ ρη ρ
π

ρ

Y E

x

a b
x

e dx= + +
















−

−

∞

∫( ) ( )1
2

2

2

1

  , (24)

where µY is the mean detector response (energy deposit) and µE is the mean of the simple power law
distribution. The term involving the integral can be thought of as a correction term to the mean for the
truncation given in table 1 and can be ignored whenever ρ<0.30; i.e., 30-percent resolution or better. Using
the method of moments, µY is estimated with the sample average Y and when combined with eq. (5) for µE,
yields eq. (25) that can then be solved in terms of α̂1

 by numerical methods:
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  . (25)

For example, when the resolution is a constant 40 percent (ρ=0.40), the point estimate of the spec-
tral parameter α1 based on the 5,000 missions is 2.801 using eq. (25) and 2.79 using the same equation but
with the correction term set to zero in the denominator, resulting in a bias of ≈0.01 that can be removed by
including this correction term. This effect is much more pronounced when ρ=0.60 and results in a bias of
0.1 in the point estimate of α1 so that the correction term is critical.

When the detector response distribution is symmetric and truncation is negligible so that µY=(a+bµE),
then α1 can always be estimated using the mean of the detector responses Y  to estimate µY in eq. (24). This
implies that knowledge of the variance of the detector distribution, and hence the resolution, is really not
required in order to estimate α1, provided knowing that the resolution is <30 percent so the effect of
truncation can be ignored.

This is a useful result, because if the uncertainty regarding the true resolution is non-negligible,
then the method of moments provides a way to proceed with the estimation of α1; e.g., the detector’s
energy resolution is known to be <30 percent but nothing more. However, as already noted, the method of
moments does not provide the minimum variance estimator that the ML method does which requires a
complete specification of the detector parameters a, b, c, and d of this assumed Gaussian response func-
tion. Furthermore, the energy resolution of most real detectors is worse than 30 percent.

This estimator based on the method of moments is a function of the random variable Y and has its
own associated pdf. Since Y has mean µY and variance σ2

Y , it is known by the Central Limit Theorem that
the distribution of Y follows a normal distribution with mean µY and variance σ2

Y/N. Thus, the variance of
the detector response Y is σ µY YY2 2 2= < > –  , where

< > = + + + +
















−

−

∞

∫Y a ab b b
x

e dxE E E

x
2 2 2 2 2 2

2
2

1
2

1
2

2

( ) ( )
( )µ σ µ η ρ ρ

π
ρ

  . (26)

For example, when α1=2.8, E1=20 TeV, E2=5,500 TeV, and ρ=0.40, Y  is normally distributed with
mean 131.58 GeV and standard deviation (213.69 GeV)/N

1⁄2. The probability distribution of α̂1, along
with its mean and standard deviation, can be obtained by solving the probability equation in eq. (27) using
the methods discussed with eq. (12):
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. (27)

If the truncation effect is assumed to be negligible in eq. (26), then the following succinct formula
for the variance of the detector response as a function of detector parameters a, b, and ρ and the mean µE
and variance σ E

2  of the power law distribution is obtained:

σ σ ρ µ σy E E Eb a b b2 2 2 2 2 2 2= + + +[ ]( )   . (28)

In terms of the standard deviation of the detector response σy, the approximation in eq. (28) is seen
to be actually quite good, for when ρ=0.40, this formula yields, σy=213.37 GeV as compared to the exact
value of 213.69 GeV obtained from eq. (27) using the integral correction terms. When ρ=0.60, this
approximation yields σy =237.31 GeV as compared to the actual value of 239.78 GeV. Thus, ignoring the
truncation is not too serious when estimating the standard deviation but can be devastating for ρ>0.40
when estimating the mean µY and hence α1 when using the method of moments. Much insight into the
estimation of the spectral parameter α1 can be gleaned from eq. (28) because it shows the relationship
between the variance σ 2

Y  of the detector response distribution, the variance σ E
2  of the GCR proton energy

spectrum, and the detector response function parameters a, b, and ρ.

The influence of the variance and other higher moments of the simple power law energy spectrum
is visualized in figure 3 which shows the mean detector response (mean energy deposit) per mission for 30
simulated missions in comparison with the mean incident proton energy for 30 missions. Corresponding
standard deviations per mission are plotted in figure 4. Note that the detector response mean and standard
deviation per mission tend to track the mean and standard deviation of the incident energies for the 30
missions, illustrating the strong influence of the GCR energy mission-to-mission fluctuations on the detec-
tor response variation, even in the presence of the “smearing” induced by this detector having 40-percent
energy resolution. As will be seen in section 2.4.2, the component of variation due to the GCR event
statistics will be the dominating component of the total variation in the standard deviation of the estimator
of the spectral index α1.
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2.4.2  Maximum Likelihood for a “Real” Detector

As in section 2.1.2, the method of ML seeks αML which maximizes the log-likelihood function so
that log L(αML ) ≥ log L(α1) for all α1, where the likelihood function for the detector response in the
presence of the simple power law energy spectrum of N incident GCR protons over the energy range
[E1,E2] is
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log ( ) log[ ( ; )] log ( | ) ( ; ) .L g y g y E E dE
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∑ ∫∑   (29)

Because of the complexity of the integral and the desired capability to easily change the functional form of
the detector response function g in eq. (29), a numerical approach for obtaining αML was chosen. Two
optimization algorithms that do not require gradient information (derivatives) were selected for use; i.e.,
the multidimensional minimization algorithm called the Nelder-Mead downhill simplex method and Powell’s
direction set method.7 While both methods provided matching results and were about the same in terms of
computer run time, the Nelder-Mead downhill simplex method was easier to control and modify the termi-
nation criteria. Furthermore, the simplex method proved to be more robust with the emergence of multiple
maxima in the likelihood function which occurred at the higher values of the knee location investigated in
the broken power law section of this TP. Therefore, the discussion that follows is specific to the downhill
simplex method. Since this is a minimization algorithm, the objective function is defined as

O L g y E E dE
E

E

j
j

N
( ) log ( ) log ( | ) ( ; )α α φ α1 1 0 1

1 1

2

= − = −












∫∑

=

  , (30)

so that minimizing O(α1) maximizes log L(α1) as desired, where the integral is numerically evaluated. The
following two termination criteria are used to halt the search procedure for the ML estimate at the (m+1)th

iteration:

 (i)  |α1,m+1 – α1,m |<ε1
and

(ii)  |O(α1,m+1) – O(α1,m)|<ε2   . (31)

The search procedure continues until the termination criteria are met, which in words are: (i) the
movement in successive step sizes of α1 is <ε1 and (ii) the objective function is changing by an amount <ε2.
Typical values used for these two stopping tolerances are on the order of 10–5 and seem reasonable in light
of the magnitude of the parameter being estimated (≈2.8) and the value of the objective function in the
vicinity of the ML solution, O(αML) being of the order of magnitude 105 when E1 is taken to be anywhere
between 10 and 30 TeV, so the number of terms in the sum is between 182,000 to 26,000, respectively.
Furthermore, changing ε1  and/or ε2 in either direction by an order of magnitude provided no noticeable
change in results.

Figure 5 shows the ML estimates of α1 for a zero-percent resolution detector obtained from eq. (14)
in comparison with the ML estimates obtained from a 40-percent resolution detector and applying the
downhill simplex algorithm to eq. (30) for 30 missions. This very close comparison suggests that the GCR
event statistics are the dominating component of uncertainty in the estimation of the spectral parameter α1.
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2.5  Summary Remarks and Conclusions for the Simple Power Law

Two methods for estimating the single spectral index (α1) of a simple power law have been inves-
tigated. The first method—the method of moments—was found to be very useful in studying the general
nature of the statistical estimation problem as well as yielding an analytical solution that could be com-
pared with Monte Carlo simulation results. Furthermore, when the detector resolution is better than
30 percent so that the truncation of the detector response function is negligible, the method of moments
provides an estimator of α1 without requiring specific knowledge of the detector resolution ρ but only that
it is better than 30 percent. This does not imply ρ is insignificant when it is <30 percent, but only that the
correction terms previously discussed can be ignored and thus explicit knowledge is not needed of the
value of ρ to estimate α1. In fact, the standard deviation of the estimator increases as ρ increases as one
would expect and results from the fact that whatever ρ happens to be, its impact is communicated to the
estimate of α1 through the variance of the detector mean response Y which is a function of ρ  as indicated
in eqs. (26)–(28).

Another interesting result is that when the resolution is <30 percent, it is not necessary to know the
explicit functional form of the detector model, but only that it is symmetric. Unfortunately, most detector
response functions are worse than 30-percent resolution and may be asymmetric as well.

The method of ML estimation clearly stands out as the method of choice for estimating α1 in terms
of minimum variance and consistency (asymptotically unbiased), as well as asymptotic normality which
allows for probabilistic statements, such as confidence intervals for the unknown spectral parameter. These
results as a function of detector resolution are shown in figure 6.
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When compared to the standard deviation of the method of moments estimator, the ratio varies
from 1.47 for the zero-percent resolution detector to 1.33 for the 50-percent resolution detector, which is
roughly equivalent to giving away half of the detector’s collecting power by choosing the inferior method
of moments estimation technique.

Also shown was that the standard deviation of the estimate for both estimation procedures is
inversely proportional to the square root of the sample size, so that halving the collecting power increases
the standard deviation by a factor of 2 . This holds true for the standard deviation of ML estimate as long
as it attains the Cramer-Rao lower bound, which it does when the number of GCR events exceeds ≈1,200.

Another important result is the relationship between the collecting power and the energy resolution
of the detector. A measure of the detector’s ability to estimate the spectral parameter α1 is its standard
deviation and as seen in figures 6 and 7, the dominant component of the standard deviation of αML is
attributable directly to the large fluctuations in GCR incident energies, being driven by the large variance
and other higher moments of the simple power law distribution. This large component can only be reduced
by increasing the number of events N that is controlled by the collection power of the dectector. A compari-
son of the standard deviation of αML for the generic detector discussed in this TP and when its collecting
power is halved is given in figure 7. Table 2 provides the numerical results used to construct many of the
figures in this section.

Figure 6.  Comparison between method of moments and maximum
likelihood as a function of detector resolution.
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Table 2.  Numerical values used to construct figures 6 and 7.

1. Method of moments (theory)
2. Method of moments (simulation)
3. Maximum likelihood (Cramer-Rao lower bound)
4. Maximum likelihood (simulation)
5. Mean detector response (GeV) (theory)
6. Mean detector response (GeV) (simulation)
7. Standard deviation (theory)
8. Standard deviation (simulation)
9. Coefficient of variation VY (detector, %)

10. Maximum likelihood
11. Ratio of line 4 to line 10, compare to sqrt(2)

0.0115
0.0114
0.00786
0.0078
130.66
130.66
192.07
191.47
147

0.0110
1.41

0.0116
0.0117

0.0083
130.66
130.64
197.61
196.86
151

0.0118
1.42

0.0128
0.0125

0.0092
131.58
130.64
213.69
213.33
162

0.0132
1.43

0.0136
0.0133

0.0100
138.85
138.81
239.77
238.82
173

0.0144
1.44

E1=20 TeV, E2=5,500 TeV,  α1=2.8, Naverage=26,000 
events. 5,000 mission averages for simulation results.

Analytical solution not available

0% 20% 40%
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E1=20 TeV, E2=5,500 TeV,  α1=2.8, Naverage=52,000 
events.  5,000 mission averages for simulation results.

Figure 7. Comparing the effect of collecting power on the standard
deviation of the maximum likelihood estimate of the
spectral index α1.
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3.  BROKEN POWER LAW

This energy spectrum suggests a transition from spectral index α1 below the knee location energy
Ek to a steeper spectral index α2 > α1 above the knee. The broken power law predicts that the number of
protons detected above an energy E is given by:1
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  , (32)

where E is in units TeV, NΑ and EΑ are 160 and 500 TeV as before, and currently available measurements
suggest that α1 is ≈2.8, α2

 is thought to be somewhere between 3.1 and 3.3, and Ek is parameterized in the
range 100–300 TeV for this research. N0(>E) is the number of protons detected above an energy E as
defined in eq. (1); and as in the simple power law section, these simulation studies assume the number of
events for a given mission follow the Poisson probability distribution with mean determined by eq. (32).
Writing N0(>E) in eq. (32) as
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and constructing the cdf as in eq. (2), then differentiating, gives the pdf of the broken power law over
energy range [E1,E2] as
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where the normalizing coefficient A is given by
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Note that φ1 has “slope” α1/α2 below/above the knee location Ek and is continuous at Ek as
required, and the single normalizing coefficient A in both mathematical terms of φ1 in eq. (34) provides a
succinct mathematical form, making calculation of the log-likelihood function in the ML search algorithm
computationally more efficient than other equivalent mathematical representations of φ1. The mean, vari-
ance, and other important moments of the broken power law distribution can be obtained from the general
form of <Em> given as
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which necessarily has dimension (TeV)m since A has dimension (TeV)–1. A random sample of GCR proton
event energies are obtained from the broken power law spectrum over the range [E1,E2] as Ei = Φ1

−1(ui),
where ui is a random number from a standard uniform distibution and Φ1

−1 represents the inverse function
of the broken power law cdf Φ1.

Figure 8 shows N1(>E) with a histogram (the ragged curve in fig. 8) constructed from simulated
events from the broken power law. N0(>E) is included in figure 8 for comparison with N1(>E) and clearly
shows the transition from α1 to α2 at the knee Ek, with the plots cropped at 1,000 TeV to better illustrate
this so-called knee region. Parameters used in this example are α1=2.8, α2=3.3, Ek=100 TeV, E1=20 TeV,
and E2=5,500 TeV.

Note that at the knee, the difference between N0(>100 TeV) and N1(>100 TeV) is 626 events and
reduces to 412 events when α2 drops to 3.1. Another important observation is the significant reduction in
the standard deviation of the incident energy when compared to the simple power law, which suggests that
detector resolution will play a somewhat larger role in the overall contribution to the estimator’s standard
deviation than it did in the case of a simple power law. The mean µE, standard deviation σE, and coefficient
of variation V=σE/µE are given in table 3 for selected parameters for comparison.
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Broken Power Law N1(>E) and Simulated N1(>E)
With Simple Power Law N0(>E),
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Figure 8. Comparison of N1(>E) with N0(>E). A histogram of
simulated events from the broken power law are also
included.

Simple power law

Broken power law

Broken power law

α1=2.8

α1=2.8, α2=3.1, Ek=100 TeV

α1=2.8, α2=3.3, Ek=100 TeV

44.50

41.83

40.67

74.1

54.17

45.54

166

129

101

Energy Range
20–5,500 TeV Spectral Parameters

Mean
(TeV)

Standard 
Deviation (TeV)

Coefficient 
of Variation (%)

Table 3. Means, standard deviations, and coefficient of variation (mathematically
the same as resolution) for the simple power law and broken power law.
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3.1  Estimation of the Spectral Parameters ααααα1, ααααα2 , and Ek

As suggested in the simple power law study in section 2, the ML procedure offers a superior
approach for estimating the spectral parameters in terms of their known favorable statistical properties.
Thus, concentration will be on obtaining the ML estimates of the three spectral indices of the broken power
law distribution. For notational convenience, the vector θθθθθ =(α1, α2 , Ek) consisting of the three broken
power law spectral indices is introduced.

The ML estimation procedure will be illustrated for a single mission by first estimating θθθθθ directly
from the incident energies Ei (equivalent to the so-called ideal detector having zero energy resolution), and
then from their simulated detector responses Yi using the same detector response function described in the
simple power law section and for the case where α1=2.8,  α2 =3.3, Ek=100 TeV, E1=20 TeV, and E2=5,500
TeV. The results from many other parametric scenarios of interest will also be presented.

3.1.1  Method of Maximum Likelihood for the Ideal Detector

The likelihood function of a random sample of size N from the broken power law, regarded as a
function of the unknown vector of parameters θθθθθ =(α1, α2, Ek) is
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where the first product is over the energies below the knee energy (Ek) and the second product is over those
energies above Ek, and they total in number to N, and A(θθθθθ) is the coefficient given in eq. (35). The Nelder-
Mead downhill simplex method is used to find the ML solution θθθθθML that minimizes the objective function
(minus the log-likelihood) defined as
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For the sample mission under consideration, the number of simulated events is N=51,259 and is a
random number generated from a Poisson distribution with mean N1(>20 TeV)=51,576 (recall N0=52,200
for the simple power law). Note that 2,165 of these events are above the assumed knee location at 100 TeV.
Also, the mean of these simulated incident energies is 40.28 TeV and standard deviation 40.79 TeV and can
be compared with the bottom row of table 3.

To obtain a reasonable starting point for the search procedure, it is first assumed that α1 will be
largely influenced by those energies (Ei) thought to be well below the knee energy (Ek), even though the
true value of Ek is unknown. For example, if all energies below 70 TeV (of which 49,094 are below 70 TeV,
or 96 percent), with the assumption that a simple power law will dominate the statistical description of
these event energies, then the ML estimate of α1 is 2.81 using eq. (30). Next, keeping α1 fixed at 2.81
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Figure 9.  Two-dimensional simplex search for (a2,Ek).

and using the full set of simulated event energies, the other two parameters are fit using a two-dimensional
simplex search for (α2,Ek), which yields α2=3.317 and Ek=95.44 TeV. The two-dimensional simplex search
is illustrated in figure 9 and three things should be noted: (1) The knee energy (Ek) has been scaled by a
factor of 0.1 so that it is fairly close in magnitude to the other two spectral parameters, (2) the simplex can
leave the initial simplex region (but in this example, it returned), and (3) the simplex moves only one
vertex per iteration.

Next, θθθθθinitial =(2.810, 3.317, 95.44) is defined and used to construct the initial simplex for the three-
dimensional search for θθθθθML, where this simplex consists of the vertices of a tetrahedron centered at θθθθθinitial
with edge lengths in each coordinate axis taken to be 20 percent of each component of θθθθθinitial. For the two-
and three-dimensional searches, slightly different termination criteria are used and the relative difference
in magnitudes of the three spectral parameters are considered. The search halts when (1) the maximum of
the greatest relative distance of each of the three spectral parameters is each smaller than ε1 and (2) the
maximum change in the objective function over each of the four vertices is <ε2, so the simplex essentially
shrinks to a very small, nonmoving tetrahedron at θθθθθML. Setting the ε’s to the values discussed in the simple
power law section, θθθθθML =(2.801, 3.324, 94.95) is obtained. At this ML solution, note 2,434 of the 51,259
simulated GCR energies are above the estimated knee location at 94.95 TeV, whereas only 2,165 are above
the “true” location at 100 TeV.

Also note that the two-stage approach for constructing a suitable initial simplex for the three-
dimensional search produced in this example values of θθθθθinitial that are quite close to θθθθθML, which of course
is very desirable. However, in subsequent studies where the true knee location (Ek) is set to higher values
such as 300 TeV, it was necessary to introduce a more sophisticated search because of the situation of
multiple minima arising from the erosion of the asymptotic properties of the likelihood function as the
number of events above the knee diminished.
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Figure 10. Stereoscopic view of the first few movements of the
Nelder-Mead downhill simplex search (cross-eyed stereo).

Figure 11.  Objective function in the vicinity of the maximum likelihood solution θθθθθML .

Figure 10 shows a stereoscopic pair of the initial simplex tetrahedron and the first few steps, where
only one vertex is moved per iteration. α1, α2, and Ek are along the xyz axis. The dot in the center is the
tetrahedron at termination, and θθθθθML is obtained from the coordinates of the last step upon halting. Dimen-
sions have been scaled according to the termination criteria and also to facilitate viewing.

As a check on the found solution, a coordinate frame is centered at θθθθθML and then the objective
function evaluated along each axis by an amount of ±10 percent of each value to measure the behavior of
O(θθθθθ) in the vicinity of θθθθθML.  The results are depicted in figure 11 and show that O(θθθθθ) is indeed a minimum
at θθθθθML. Note that variation in α1 produces the greatest variation in the objective function, as one would
expect, since it is a coefficient of 48,825 (95.2 percent) of the event energies below the estimated knee
location at 94.95 TeV.

z

zy

y

x x

81,400

81,350

81,300

81,250

81,200

Ob
je

ct
iv

e 
Fu

nc
tio

n 
(α

1,
 α

2) Objective Function (E
k )

81,150

81,100

81,050

81,000

80,950

80,984.5

80,984

80,983.5

80,983

80,982.5

80,982

80,981.5

80,981

80,980.5

80,980

80,979.5
80,979

0 20 40 60

50 Points Either Side of θML (±10 Percent Each Parameter)

Objective Function Around the Maximum Likelihood Solution

80 100θML

α1

α2

Ek



25

Figure 12. Detector response probability density function for resolutions
10, 20, 40, and 50 percent.

3.2  Estimation of the Spectral Indices With a “Real” Detector

For each simulated GCR event energy Ei from the broken power law spectrum, there is an associ-
ated simulated detector response Yi according to the detector response function defined in eq. (19). The pdf
of the detector response in the presence of the broken power law spectrum is thus given by

g y E g y E E E dE yk
E

E

k1 1 2 1 1 2

1

2

0( ; , , ) ( | ; ) ( ; , , ) , ,α α ρ φ α α= >∫ (39)

where the integral limits [E1,E2] must be split as [E1,Ek] and [Ek,E2] in the numerical integration. Figure 12
depicts this pdf for several different values of the detector energy resolution (ρ).

Detector responses Yi for a detector with constant resolution ρ=0.40 are simulated and all other
detector response function parameters are defined in the simple power law case, using the same set of
51,259 incident energies Ei from the broken power law spectrum considered in the zero-resolution case.
The mean is calculated as 120.37 GeV and the standard deviation 123.99 GeV. Figure 13 compares prob-
ability curves (greater than) on a log-log scale for the detector response distributions in the presence of the
broken power law φ1 and the simple power law φ0. A log-log scale helps illustrate the difference between
detector response distributions to the two different GCR energy spectra φ0 and φ1. A frequency histogram
of the simulated detector responses to a broken power law is also provided in figure 13 (lower curves),
although it is virtually indistinguishable from the theoretical function.
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Detector Response Probability Distribution P(Y>y) to Broken

Power Law φ1, and Simple Power Law φ0

α1=2.8, α2=3.3, Ek=100 TeV, E1=20 TeV, E2=5,500 TeV
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and Simulated Response
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Figure 13.  Detector response distributions Pr(Y>y) in the presence of
a simple power law and and broken power law. Histogram
of simulated responses to broken power law is also
included.

The simplex procedure is used to obtain the ML estimates θθθθθML for the three spectral indices that
minimize the objective function (minus the log-likelihood):

                       O Log g y E E dE
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Selection of a starting point for the three-dimensional search follows along similar lines to the zero-
resolution energy case, but here only the detector responses Yi are used. Again, assume the estimate of α1
will be largely influenced by those detector responses Yi thought to be below the detector’s mean response
to some GCR event believed to be below the knee Ek; e.g., a 70-TeV event. Thus, a simple power law is fit
to those detector responses below 196.76 GeV (mean response to a 70 TeV GCR proton and accounts for
89 percent of all the detector responses in this simulated set), with the assumption that a simple power law
will dominate the statistical description of these events. It is important to note that the present goal is to
obtain a reasonable starting value of α1. Even though some detector responses to incident energies below
Ek will end up above the detector mean response to Ek and visa versa, the set of response energies below
the mean detector response to a 70-TeV event given by µ(70 TeV)=196.76 GeV should be well represented
by a simple power law. Thus, the conditional pdf g0(y,α1 | y< 196.76 GeV) is used and its associated
objective function minimized in terms of α1 to obtain 2.8. In practical terms, the front end of the detector
response pdf g1 is approximated with the detector response pdf g0 associated with a simple power law.
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Figure 14. Approximating the front end of G1 with G0
(cumulative detector response distribution to
simple power law).

Figure 14 shows the fitted detector response distribution 1–G0 (Y | Y< 196.76 GeV) with the detec-
tor response histogram in the presence of the broken power law. Their difference is provided since the two
curves are visually on top of each other.

Holding α1 fixed at 2.8 and using the full set of detector responses, a two-dimensional search for
(α2, Ek) yields α2=3.32 and Ek=96.8 TeV. Figure 15 shows the fitted distribution making the transition
along the two parts of the broken power law distribution joined at the knee Ek, and tracks the histogram of
simulated detector responses. A simple power law response distribution given by Pr(Y>y)=1–G0(y) is pro-
vided for comparison. As before, a tetrahedron about θθθθθinitial = (2.80, 3.32, 96.8) provides the initial simplex
and then a three-dimensional search using all the detector responses yields θθθθθML =(2.81, 3.38, 102.9).

To check the ML solution, a coordinate frame is centered at θθθθθML and the objective function evalu-
ated along each axis by an amount of ±10 percent of each value to measure the behavior of O(θθθθθ) in the
vicinity of θθθθθML. The results are depicted in figure 16 and indicate that the objective function is indeed a
minimum at θθθθθML. A slightly more rigorous check was also performed in which the objective function was
evaluated at each point of a random cloud consisting of 1,000 points surrounding θθθθθML and for which
O(θθθθθML) was observed to be the smallest.
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Figure 16. Objective function in the vicinity of the maximum
likelihood solution θθθθθML
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4.  RESULTS

Methods for obtaining the ML estimates of the three spectral parameters of the broken power law
distribution from simulated detector responses have been developed, thereby enabling us to study various
calorimeter design parameters and their impacts on the statistical properties of these ML estimates. The
following studies are of particular interest and are included: (1) Statistical properties of the ML estimates
and variation of the knee location and spectral break size, (2) data analysis range, (3) energy-dependent
resolution, (4) non-Gaussian detector response functions, (5) collecting power versus energy resolution,
and (6) implications of detector response model uncertainties.

4.1 Statistical Properties of the Maximum Likelihood Estimates
and Variation of the Knee Location and Spectral Break Size

In this section, the statistical behavior of the ML estimates of the three spectral parameters based on
simulating many missions is explored. Figure 17 shows relative frequency histograms of these estimates
based on 1,000 simulated missions in which the spectral parameters were set to α1=2.8, α2=3.3, and Ek=100
TeV for the data analysis range 20–5,500 TeV and a detector having a Gaussian response function with
40-percent constant energy resolution. Note that the histograms are roughly Gaussian in shape but with a
slight skewness to the right, exhibited for α2 and Ek but not α1.
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These observations lead to a more general investigation of the asymptotic behavior of ML esti-
mates. Table 4 provides a summary of these findings. The first column lists the Gaussian response function
resolution (zero and 40 percent) for the studies presented in table 4, and the second column gives the
average number of events above E1=20 TeV used in each simulated mission, along with the average num-
ber of events above the knee location Ek given in parentheses for values of Ek=100, 200, and 300 TeV. For
example, the entry 51,576 (2,255) appearing in the first row indicates there are 51,576 events on average
above 20 TeV for the baseline detector of which 2,255 of them would be above the knee location, Ek=100
TeV. The next three columns give the mean of each spectral parameter based on the simulation results,
followed by the last three columns that give their respective standard deviations. The rows labeled as
“Theoretical Limits” provide the input parameters for these simulation studies along with the Cramer-Rao
bound which is the bound below which the variance of an estimator cannot fall2 and is thus very important
when comparing different estimation techniques.

First, note in table 4 that as the true knee location (Ek) is set at 100, 200, and 300 TeV in the
simulations, an ever-increasing amount of bias is observed in the mean estimate of α2 and Ek due to the
erosion of consistency (asymptotically unbiased) and is a direct consequence of the diminishing number of
events above the knee, whereas the ML estimate of α1 continues to enjoy this favorable statistical property.

The Cramer-Rao lower bound is provided for comparison with the standard deviations of the ML
estimates obtained from the simulations. Note that while this theoretical minimum variance bound is nearly
attained when the true knee location (Ek) is 100 TeV and the number of events above Ek is over 2,000, the
ability to achieve this lower bound gradually declines as the true knee location Ek increases to 200 TeV, and
then even more so when Ek=300 TeV. The gradual growth in bias and inability to achieve the Cramer-Rao
lower bound, coupled with a growing skewness in the frequency histograms of the estimates for α2 and Ek
that indicate the asymptotic normality property is slipping away too, are symptoms of the increasing diffi-
culty in estimating the spectral parameters when the true knee location (Ek) is too high for this baseline
detector. Furthermore, an investigation of the behavior of the objective function defined in eqs. (38) and
(40) shows the emergence of multiple minima at these higher values of Ek and is a condition that is
observed to worsen with increasing Ek.
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Table 4. Asymptotic behavior of the maximum likelihood estimates for Ek= 100, 200, 300
TeV, collecting power 1× (baseline) and 5×, with a special 6.4× detector only for
the Ek=300 TeV case.
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Figure 18.  Effect of collecting power on histogram of knee location estimates.

As noted in table 4, the case where Ek=300 TeV and the detector’s energy resolution is 40 percent
resulted in several errant estimates of α2 and Ek, which is perhaps an indication that a simple power law
would provide an adequate explanation of these particular simulated “missions.” However, as indicated in
table 4, these favorable statistical properties are largely restored when the collecting power is increased by
a factor of 5 and reinforces the importance of collecting power. Furthermore, no errant estimates were
observed. Figure 18 shows the effect of collecting power on the histograms of the estimate of the knee
location when Ek=200 TeV and compares the baseline (outer curve) with a 2× (middle) and 5× (inner)
detector.

It should be noted that the Cramer-Rao bound was derived for the ideal detector having zero energy
resolution and shows those values of the knee location Ek where one begins to see an erosion of the asymp-
totic properties of ML estimates and the difficulties encountered with the multiple minima of the objective
function. Attempts to derive the Cramer-Rao bound for a “real” detector having a nonzero resolution and
involve the convolution integral in eq. (39) were found to be mathematically intractable. However, they
can readily be numerically constructed using record-order difference equations.

Also of interest is the correlation between the ML estimates of the three spectral parameters, a
direct consequence of the mathematical definition of the broken power law in which the knee Ek acts as a
“hinge,” connecting the lower part of the distribution controlled by α1 with the upper part controlled by α2.
Thus, one can easily visualize a correlation between α1 and Ek and α2 and Ek, while α1 and α2 appear to be
only slightly correlated according to the simulation results.
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For example, when α1=2.8, α2=3.2, Ek=125 TeV, E1=20 TeV, E2=5,500 TeV, and the detector
resolution is zero, the correlation matrix given in table 5 is based on 25,000 simulated missions. When the
detector resolution is 40 percent and a Gaussian response function used, the correlation was seen to be
slightly greater among the estimates of the three spectral parameters.

 Correlation Matrix

α1 α2 Ek

α1 1.00 0.08 0.42

α2 0.08 1.00 0.72

Ek 0.42 0.72 1.00

Table 5.  Correlation matrix based on 25,000 simulated missions.

4.1.1  Spectral Break Size of 0.3

The case where α2 is set to 3.1 in the simulations and the so-called spectral break size is reduced to
0.3 when α1 remains fixed at 2.8 is of particular interest. Figure 19 shows relative frequency histograms of
three estimates (α1, α2, Ek )ML based on 1,000 simulated missions in which the GCR events were simulated
from the broken power spectrum with α1=2.8, α2=3.1, and Ek=100 TeV over the range 20–5,500 TeV for
which the average number of events above 20 TeV is 51,800 and of which 2,500 are above the assumed knee
location at 100 TeV. The detector is assumed to have a constant 40-percent energy resolution with a Gaussian
response function.

Figure 19.  Relative frequency histograms of the maximum likelihood estimates of the three
spectral parameters α1, α2, Ek of the broken power law energy spectrum.
Detector response function is Gaussian having 40-percent constant energy
resolution.
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Figure 20a. Standard deviation of the maximum likelihood
estimate of α1 for the α2=3.1 and α2=3.3 case
as a function of detector (assumed Gaussian)
resolution.

Also note that the mean and standard deviation of the incident GCR energies are µE=42 TeV and
σE=54 TeV, respectively, for this simulation scenario. Comparing to the case where α2=3.3 and the other
parameters the same shows an average of 51,600 events above 20 TeV of which 2,250 are above the
assumed knee location at 100 TeV and with µE=41 TeV and σE=46 TeV. Thus, the standard deviation is
considerably larger for the α2=3.1 case but also has ≈10 percent more events above the knee Ek.

Figures 20a and 20b compare standard deviations of the ML estimate of α1 and α2, respectively, for
the α2=3.1 with α2=3.3 case as a function of detector energy resolution. A somewhat surprising result is
observed in figure 20b where the standard deviation of the α2 estimate actually decreases when the spectral
break size decreases from 0.5 to 0.3 and is attributable to the 10-percent increase in events above the knee,
despite the increase in GCR incident energy variance (σE increases as the break size decreases, and hence
so does the standard deviation of the detector responses σY which would tend to increase the standard
deviation of the estimate of α2). Thus, as seen in figure 20b, the increase in events above the knee slightly
outweighs the increase in variance associated with the decrease in spectral break size. Note in figure 20c
the standard deviation of the Ek estimate almost doubles when the spectral break size decreases from 0.5 to
0.3, a more intuitive result.
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Figure 20b.  Standard deviation of the maximum likelihood
estimate of α2 for the α2=3.1 and α2=3.3 case
as a function of detector (assumed Gaussian)
resolution.

Figure 20c.  Standard deviation of the maximum likelihood
estimate of Ek for the α2=3.1 and α2=3.3 case
as a function of detector (assumed Gaussian)
resolution.
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 α1

α2

Ek

Mean

2.80

3.10

100.5 TeV

Standard

Deviation

0.0084

0.032

8.6 TeV

Cramer-Rao

Bound

0.0083

0.031

7.6 TeV

 α1

α2

Ek

1.00

0.06

0.47

0.06

1.00

0.68

0.47

0.68

1.00

α1 α2 Ek

Table 7.  Correlation matrix.

Table 6.  Means, standard deviations,
and Cramer-Rao bounds.

4.2  Data Analysis Range Study

The energy range [E1,E2] from which GCR proton events are simulated has a significant impact on
the statistical properties of the ML estimates. While increasing E2 beyond 5,500 TeV has no noticeable
effect since events of energy exceeding 5,500 TeV are very unlikely, lowering E1 does have a significant
impact on the standard deviation of the estimates of α1 and Ek. By lowering E1, many more events repre-
sentative of that part of the broken power law below the knee and controlled by α1 will be detected, along
with the extension of the estimation range or “moment arm” for α1, the combination thereby providing
greater precision in the estimation of α1. Furthermore, as α1 is estimated with greater precision, Ek can be
measured with somewhat greater precision too since reducing the variation in α1 removes additional varia-
tion in the “hinge” Ek. Hence, lowering the data analysis range results in a reduction in uncertainty of α1
and Ek and thus reduces the total uncertainty so that very slight gains in variance reduction in the estimate
of α2 is also realized. These results are depicted in figures 21a–21c for α1, α2, and Ek, when E1=30, 20, 15,
and 10 TeV and for which there were on average 24,500, 51,500, 87,000, and 181,000 events, respectively,
with ≈2,250 above the knee for each. Other parameters are α1=2.8, α2=3.3, Ek=100 TeV, E2=5,500 TeV,
and the response function is assumed Gaussian.

Last, the asymptotic properties and correlation among the estimates is explored by simulating 100,000
missions from the broken power distribution with α1=2.8, α2=3.1, and Ek=100 TeV over the range of
20–5,500 TeV. This is accomplished using a detector having twice the collecting power of the baseline
detector and thus providing 103,600 events on average above 20 TeV, of which ≈5,000 are above the
assumed knee location at 100 TeV. The ideal or zero-resolution detector is also used for comparison with
the Cramer-Rao bound which has only been derived for zero-resolution detectors. Table 6 gives the means,
standard deviations, and Cramer-Rao bound for this scenario and table 7 gives the correlation matrix based
on these 100,000 simulated missions.
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Figure 21a.  Effects of lowering E1 on the standard deviation of the estimate of α1.

Figure 21b.  Effects of lowering E1 on the standard deviation of the estimate of Ek.
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Figure 21c.  Effects of lowering E1 on the standard deviation of the estimate of α2.

4.3  Energy-Dependent Resolution Study

The situation in which the detector response function is assumed to be Gaussian but the detector
energy resolution varies with incident GCR event energy is of particular interest to designers of cosmic-ray
detectors. In previous studies presented so far in this TP, the detector response function is assumed to be
Gaussian with a linear mean response (energy deposit) of the form (a + bE) and with constant detector
energy resolution ρ so that the parameter σ in the Gaussian response function is defined as σ(Ε)=ρ(a + bE).
Two cases of interest are (1) energy resolution is “getting better” from 40-percent resolution at E1=20 TeV
to 30 percent at E2=5,500 TeV and (2) “getting worse” from 30-percent resolution at E1=20 TeV to
40 percent at E2=5,500 TeV. These two cases are modeled by assuming that σ(E) is a linear function of
incident GCR energy of the form (c + dE) and then the coefficients c and d are determined by matching the
conditions for each of the two cases. Doing so yields the energy-dependent resolution curves depicted in
figure 22.

Table 8 shows the results based on 100 simulated missions using the same incident GCR energies
for both cases and the mean estimates shown are essentially unbiased, with standard deviations having
expected comparisons; e.g., standard deviations slightly larger for the “getting worse” case. The constant
40-percent case is included for comparison.
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4.4  Non-Gaussian Detector Response Functions

The simulation studies presented so far have assumed a Gaussian detector response function. While
reference 5 suggests that a Gaussian function is reasonable, there is concern that perhaps the response
function is skewed slightly to the right and that this “tail” will contribute to greater difficulties in estimat-
ing the broken power law spectral parameters. The gamma response function, capable of describing a wide
variety of shapes with right-hand skewness (outer curve from the right in fig. 23) and the broken-Gaussian
consisting of two blended normal distributions (middle curve from right) suggested by  reference 8 for its
closeness to the Gaussian response function but with the tail region, as desired, were introduced to address
this concern. Both were used as detector response functions in 1,000 simulated missions using the baseline
detector collecting power and simulating GCR events from the broken power law with parameters α1=2.8,
α2=3.3, Ek=100 TeV, from the range 20–5,500 TeV. The results are shown in table 9. Note that the gamma
response function produces a slight bias in the estimate of the knee location that was removed in a subse-
quent run with the collecting power doubled. Also note that the standard deviation of the estimate of α2
increases by ≈13 percent for both response models relative to the Gaussian response function having
40-percent resolution. It should also be noted that while the gamma response function has a constant
energy resolution of 40 percent, the broken Gaussian has a 41-percent resolution because of the added
skewness while keeping the rest of the distribution matching the Gaussian.
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Figure 22.  Energy-dependent resolution curves.

Table 8.  Nonconstant energy resolution results.

Mean and Standard Deviation of the Estimates Based on 100 Missions

Spectral
Parameter

Constant 40%

Resolution
Nonconstant

(Getting Better)
Nonconstant

(Getting Worse)

Mean
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

α1

α2

Ek

2.80

3.33

100.7

0.02

0.072

14.4

2.794

3.309

99.63

0.018

0.067

12.6

2.794

3.312

99.93

0.018

0.073

13.5
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Figure 23.  Gamma, broken Gaussian, and Gaussian response functions.
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4.5  Collecting Power Versus Resolution Study

Cosmic-ray instrument developers must often make trade studies in design parameters as a func-
tion of the science objectives, which is very important for space-based detectors where physical param-
eters, such as dimension and weight, impose rigorous practical limits to the design envelope. Particularly
important is the comparison between detector energy resolution and collecting power (combination of
detector size and observing time) two parameters often played against each other in the design phase of a
new detector program. As seen in the simple power law section, the ability to measure the spectral param-
eter α1, measured in terms of the standard deviation as its estimator, depends rather weakly on resolution
and strongly on collecting power as is evidenced in figure 7. Also observed was that the standard deviation
is inversely proportional to the square root of the number of events, so that halving or doubling the collect-
ing power scales the standard deviation by a factor of 2  for the ML estimate when the number of events
exceeds around 2,000. As noted in table 3, the variance of the broken power law distribution (and its higher
moments too, although not shown in table 3) is somewhat smaller than the variance of the simple power

Table 9.  Gaussian, broken Gaussian, and gamma response function study.

Mean and Standard Deviation of Maximum Likelihood Estimates of Spectral Parameters (1,000 Missions)

Response Model
(40% Resolution)

α1 α2 Ek

Mean
Standard
Deviation Mean

Standard
Deviation Mean

Standard
Deviation

Gaussian

Broken Gaussian

Gamma

2.80

2.80

2.80

0.020

0.021

0.023

3.31

3.31

3.31

0.072

0.082

0.082

100.7

100.8

102.3

14.4

14.9

16.1
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law, implying the detector’s energy resolution will play a somewhat stronger role in the estimation of the
three spectral parameters. Figures 24a–24c illustrate the relationship between collecting power and detec-
tor energy resolution by showing the impact on the standard deviation of the three spectral parameters
when the collecting power of the baseline detector is halved and then doubled. In this study, GCR events
were simulated from the broken power law with parameters α1=2.8, α2=3.3, Ek=100 TeV, from the energy
range 20–5,500 TeV, and the baseline number of events is 51,600 above 20 TeV of which 2,250 are above
the assumed knee at 100 TeV. In approximate terms, note that doubling the collecting power compares with
about a 20-percent trade in resolution for α1 and Ek but also note that a 40-percent resolution detector is
better than a zero-resolution detector of half its size relative for the event-starved α2 parameter.

Figure 24a.  Relationship between collecting power and energy
resolution measured in terms of the standard deviation
of the maximum likelihood estimate of α1.
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Figure 24b. Relationship between collecting power and energy
resolution measured in terms of the standard
deviation of the maximum likelihood estimate of α2.

Figure 24c.  Relationship between collecting power and energy
resolution measured in terms of the standard deviation
of the maximum likelihood estimate of Ek.
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It is important to note that the relationships illustrated in figures 24a–24c are independent of the
energy range as similar comparisons were observed when E1was lowered to 15 TeV and to 10 TeV. Raising
E2 has no effect since the number of events above E2=5,500 TeV is negligible for detectors with this
collecting power.

Because the Cramer-Rao lower bound always scales by N  for each of the three spectral param-
eters and, as noted in table 4, the asymptotic properties (including attainment of the Cramer-Rao bound) of
the ML estimates of α2 and Ek are nearly met whenever the number of events above the knee exceeds
2,500, which is about the situation for the baseline detector collecting power when Ek=100 TeV, it can be
seen that doubling the collecting power means the standard deviation of the α2 and Ek estimators scales by

2 , but halving results in a factor of around 1.5 instead of 1.41, as attainment of the Cramer-Rao bound is
slipping away faster for the smaller detector. Obviously, as Ek increases to 200 and 300 TeV as in table 4,
the number of events above the knee diminishes too so that the bound is not attained, so scaling will not go
by the N until the collecting power is such that the number of events above Ek is ≈2,500 or more. This
latter result is the rationale for selecting the hypothetical 5× detector in table 4 so that the number of events
above Ek=200 is 3,235. Of course since the number of events representative of α1 is always quite large and
is on the order of 50,000 or greater when the lower limit of the data analysis range is 20 TeV or less for the
baseline detector, scaling by N  will hold for the standard deviation of the ML estimate of α1.

4.6  Implications of Detector Response Model Uncertainties

Maximum likelihood estimation of cosmic-ray spectral parameters as presented in this TP requires
the complete specificity of all detector response model parameters. The reality of actually knowing these
parameters with little or no surrounding uncertainty depends largely on designers being able to calibrate
the detector at different incident energies at a particle accelerator facility. However, because space-based
detectors will be exposed to GCR events having energy much greater than those energies available at
accelerator facilities, it becomes essential to gain an understanding of the detector’s response function
using Monte Carlo simulations of the detector’s response (energy deposit) to those energies that cannot be
attained at accelerator facilities. These simulations, coupled with a favorable comparison between simula-
tion results and accelerator results at energies available in a test facility, will provide a better understanding
of the detector response function.

By way of example, the impacts on spectral parameter estimation when certain detector response
function parameters are incorrectly known are investigated next. This state of ignorance will manifest
itself as a bias in the mean or point estimate of the spectral parameters. This situation is modeled by
simulating detector responses according to one set of detector response function parameters and then using
a different set of parameters in the detector response function g in eq. (40) of the ML estimation procedure.

Since detector resolution is an important design parameter, the case is first considered where the
detector has a constant energy resolution; however, a different resolution value was used in an assumed
state of misunderstanding in eq. (40). For example, suppose the real detector resolution is a constant
35 percent, but in the simplex search the resolution parameter (ρ) is set to different constant values in
eq. (40) corresponding to resolutions ranging from 31 to 39 percent. This situation is modeled by simulat-
ing the detector responses Yi as
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Yi = (a + bEi)(1 + 0.35 Zi)  (41)

according to eq. (18) and for GCR event energy Ei from an assumed broken power law with parameters
α1=2.8, α2=3.3, and Ek=100 TeV, from the energy range 20–5,500 TeV and for an assumed Gaussian
response model having 35-percent energy resolution. Zi is a Gaussian random number having zero mean
and unit variance, along with the nonnegativity constaint Yi >0. Next, in the ML procedure, ρ is set to the
different values in eq. (40) to obtain the ML estimates of the three spectral parameters. Table 10 at the end
of this section shows the mean for each of ML spectral parameter estimates based on 100 simulated mis-
sions, each where ρ is set to 0.31, 0.32, … , 0.39 in eq. (40).

Table 10.  Implications of detector response model uncertainties.

Note that the mean estimates exhibit a bias as a result of using incorrect values of ρ in eq. (40). Also
see in table 10 that when ρ=0.35 in eq. (40) and matches the “correct” resolution as used in eq. (41) to
simulate the detector responses, the means of the ML estimates match the assumed spectral parameters
used in the simulation, and thus there is no bias in the estimates. It was also noted that their variances were
essentially unaffected and this example is akin to a misaligned riflescope that results in the rifle shooting
off-axis from the line of sight but the shot group size remains unaffected.
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Next, consider the situation where the real detector resolution is energy dependent, but a constant
resolution of 35 percent is used in eq. (40). For example, if the real detector resolution is “getting better”
over the simulated GCR energy range 20–5,500 TeV as shown in figure 22 but instead a constant ρ=0.35 is
used in eq. (40) in the simplex search for θθθθθML and 100 simulated missions, very large biases result (given
in table 10). Another case where the real resolution was “getting worse,” depicted in figure 22, was when
a constant of 35-percent resolution was again used in eq. (40), resulting in the other large biases given in
table 10. Based on these studies, one concludes that the real key is to understand what the true energy-
resolution relationship is and not so much a matter that it has a particular mathematical form. However, as
these studies indicate, designs having a constant resolution are more forgiving as long as the error amount
is a constant.

Another important study regards the so-called tails of the response function. The response func-
tions depicted in figure 23 were used to address this concern. The results from these simulations are pre-
sented in table 9 and indicate that while a “smaller tail” is desirable, having a larger tail is not as bad as
perhaps feared. Of particular interest is the situation in which the real detector response function is Gaussian
but in a state of ignorance, the broken Gaussian function is inserted as the detector response function g in
eq. (40) in the ML search for θθθθθ. Based on 1,000 mission averages, a large bias in the mean estimates of the
spectral parameters is noted in table 10. In the case where the real detector response function is the broken
Gaussian function, the Gaussian function was incorrectly used in eq. (40) and is also included in table 10,
and again large biases are seen. These two cases are labeled as method 1 and will be compared to a revised
technique labeled method 2.

It should be noted that in method 1, as well as in all simulation studies presented so far in this TP,
GCR events are simulated from an energy range E1 to E2, where typically E2=5,500 TeV and E1 is a value
between 10 and 25 TeV. The choice of E2 is based on the collecting power of the detector and is chosen
such that there will only be a negligible number of events above E2. The selection of E1 is largely dictated
by the practical number of events that can be handled in the simulation and for a thousand or more mis-
sions. Setting E1 to ≈20 TeV proved to be a good working value since 50,000 events on average are
generated for the baseline-sized detector that are representative of α1 and hence provides a robust estimate
of α1 for the unconstrained multistage approach of estimating the three spectral parameters; i.e., first
fitting α1, then keeping α1 fixed at this value and fitting α2 and Ek, followed by the three-dimensional
search for (α1, α2, Ek)ML on the full set of energy deposits. The adequacy of this working value of E1=20
TeV is further reinforced by noting in figure 21c that the critical parameter α2 is essentially independent of
lowering E1 below 20 TeV when the knee location is 100 TeV or greater.

Next, for each of these simulated GCR events, a detector response is simulated according to the
assumed detector response function and then the full set of simulated responses are used to estimate the
spectral parameters. However, because no energies below E1 are simulated, frequency histograms of the
simulated detector responses, which resemble the appropriate detector pdf shown in figure 12, do not
match the front-end portion of a real cosmic-ray energy spectrum which does look like those depicted in
figure 8. This difference or mismatch is an artifact of not generating events from below E1 that would have
otherwise had the effect of filling in this front-end portion of the histogram and consequently resembling a
real cosmic-ray energy spectrum.
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This difference is not critical when making relative comparisons of the effects of design parameters
or energy spectrum parameters when detector response function parameters used to generated the simu-
lated responses match those detector response function parameters used in eq. (40) in the simplex search
for θθθθθML; i.e., implies a perfect understanding of the response function. However, when the impacts of
response function uncertainties are studied, it is more important that the simulation techniques produce
results that are closer to a real cosmic-ray energy response spectrum. To illustrate this point, suppose E1 is
set to 5 TeV in the simulation and the baseline detector collecting power is used, along with a broken power
law energy spectrum with parameters α1=2.8, α2=3.3, and Ek=100 TeV, and E2=5,500 TeV so that there
will be around 634,000 events above 5 TeV. Next, if detector responses assuming a Gaussian response
function with a constant 40-percent energy resolution are simulated, then there will be 477,400 responses
on average <50 GeV, whereas there will be 459,400 responses <50 GeV if the broken-Gaussian response
function depicted in figure 23 is used, or a difference of 18,000 events. This region of energy deposits <50
GeV results in that portion of the histograms that are of the greatest mismatch between the Gaussian and
broken-Gaussian detector response histograms and is an artifact of not having any events <5 TeV in the
simulation, and it is also the same region that does not match a real cosmic-ray response spectrum. Thus, it
is this large mismatch that is driving the large biases seen in table 10 for α1 and Ek when responses accord-
ing to one of these response functions are simulated and then the other response function is used in eq. (40)
of the simplex search for θθθθθML to study the impact of incorrectly understanding the “tail” of the detector
response function.

The goal of method 2 is to make the histogram of the simulated detector responses match a real
cosmic-ray energy spectrum when studying the effects of incorrectly known detector response function
parameters so that a better estimate of their impact on the spectral parameter estimates is gained. This is
achieved by placing a cut yc in the simulated detector responses and then dropping all responses <yc. In the
simulation, the choice of yc dictates the value of E1 because E1 must be chosen so that the probability of
events having energy <E1 but producing detector responses >yc is negligible, which obviously depends on
the detector’s energy resolution. For example, if yc=60 GeV and a Gaussian response function having a 40-
percent        energy resolution and a mean response (a + bE) is considered, as used for the baseline detector
and defined in eq. (18), then E1 can be any value ≤7 TeV, since only a negligible number of events from
below 7 TeV will deposit more than 60 GeV. Selecting E1=5 TeV provides ≈634,000 GCR events and
setting yc=60 GeV and dropping all simulated detector responses smaller than yc produces a simulated
response spectrum that does indeed look like a real response spectrum. Estimating the spectral parameters
using only the simulated detector responses that are >yc as described here and for the case where the real
detector response function is the broken Gaussian but a Gaussian function is inserted in eq. (40) in the
simplex search for θθθθθML which results in the much more modest and intuitive biases shown as method 2 in
the last row of table 10. Varying the cut yc between 60 and 100 GeV produced similar results for all three
spectral parameters, while lowering yc below 55 GeV resulted in the more severe bias obtained using
method 1 and associated with the large front-end mismatch of the histograms.

A very important practical benefit realized by introducing the cut yc is that the lower limit of inte-
gration in eq. (40) can be any value EL<E1, which means that the ML procedure can be made independent
of the range of integration, as long as EL is chosen wisely. Thus, the ML estimation procedure herein
developed can now be applied to real cosmic-ray detector response data. It should be mentioned that cuts
on the high end are not required, since any value EH≥E2 is suitable because the probability of events >E2
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are essentially zero. However, setting EH unnecessarily high would result in many unnecessary calcula-
tions in the numerical integration of eq. (40).

Introducing the cut yc requires a modification to the objective function in eq. (40) to handle the
conditional detector response distribution. Thus, the objective function for method 2 becomes

O E L g y y y Ek
j
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From a simulation point of view, E1=5 TeV is about the lowest value that was used because of the
vast number of generated events and the requirement to handle thousands of simulated missions which are
needed to make meaningful inferences. Consequently, cuts much less than 60 GeV are generally not fea-
sible in simulations designed to study detector response function uncertainties. However, cuts in real
cosmic-ray data can be taken to be much lower since the spectrum is already filled in from events having
energies much less than 5 TeV.
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5.  CONCLUSIONS

Methods for estimating cosmic-ray spectral parameters from simulated detector responses with
implications for detector design are presented in this TP. The method of ML estimation is seen to be the
method of choice for estimating the single spectral parameter α1 of a simple power law spectrum in terms
of minimum variance and other important statistical properties and was thus selected as the estimation
procedure for the broken power law spectrum. Again, the ML estimates attained these favorable statistical
properties when the true knee location was around 100 TeV, but then these properties gradually slipped
away for knee locations of 200 TeV and greater. The case of a spectral break size of 0.3 was also investi-
gated and the results compared with the 0.5 break-size case in figures 20a–20c. A data analysis range study
was conducted and showed that significant improvements in the precision in estimating the slope α1 below
the knee and the location Ek (but to a lesser degree) can be realized by lowering the lower limit of the
simulation range E1 but had essentially no impact on the estimation of the slope parameter α2 above the
knee.

The effects of detector energy resolution, collecting power, as well as various functional forms for
the detector response function and energy-dependent resolution functions have also been studied and these
results presented in this TP. While the energy resolution observed plays a somewhat stronger role in the
estimation of the spectral parameters of a broken power law energy spectrum relative to a simple power
law, the ability to estimate these spectral parameters, measured in terms of their standard deviations, still
depends rather weakly on resolution and strongly on collecting power.

While increasing the size of the right-hand tail of the detector response function did indeed cause a
slight rise in the standard deviation of the estimates of the three spectral parameters (greatest for α2), the
ML estimation procedure yielded estimates that, from a practical point of view, are unbiased. Similar
results were gleaned from the studies using energy-dependent resolution functions. The implications of
detector response model uncertainties were also investigated and the magnitude of such induced biases for
various uncertainties presented. Cuts in the detector response data were introduced to simulate a more
realistic cosmic-ray response spectrum and thereby provide a better description of the induced biases in the
spectral parameter estimates when detector parameters are incorrectly known. Introduction of these cuts
yielded the additional benefit of freeing the integral used in the ML procedure of requiring unique integra-
tion limits, thereby making this ML estimation procedure applicable to real cosmic-ray data.
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APPENDIX A—SALIENT RESULTS AND THEIR APPLICATION
TO DESIGN OF SPACE-BASED COSMIC-RAY DETECTORS

A number of the salient results from this research and their application to the design of space-
based cosmic ray deterctors are presented in appendix A.
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